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An algorithm for calculating the geometrical characteristics of an edge, including the position of its free boundaries, has been 
developed and implemented as a computer program based on a previously obtained [1, 2] analytic solution of the problem of 
filtration at the edge of drainage of fresh ground water which is above saline water. A straightforward sequence of calculations, 
with a preliminary determination of the conformal mappings, enabled a complete hydrodynamic analysis to be made of the flow 
at the edge with the interpretation of the drain as a water supply. Here, in each version of the numerical calculations, the optimal 
depth for laying the water supply is established which ensures its maximum possible productivity on the brink of destabilization 
of both free boundaries of the edge. Another application of this boundary-value problem is the calculation of the zone of 
demineralization of the: soil layer which contained saline ground waters as a result of their replacement by fresh surface waters 
and drainage. Copyright © 1996 Elsevier Science Ltd. 

1. T t t E  B O U N D A R Y - V A L U E  P R O B L E M  A N D  T H E  P R O B L E M  
O F  T H E  P A R A M E T E R S  

We shall consider the free steady-state filtration of  fresh water  above quiescent saline waters f rom 
periodically arranged linear surface sources to point  drains o f  equal capacity laid halfway between them 
at the same depth. The  half  per iod o f  such a fresh water  edge is depicted schematically in Fig. l (a )  as 
the flow domain.  

We will formulate  the boundary-value problem of  finding the complex stream potential  relative to 
the filtration coefficient 0~(z) = ~0 + i v  (9  is the filtration velocity potential  and ~/is the s tream function 
[3]) which is an analytic funct ion o f  the complex coordinate  z = x + / y  o f  the points of  the flow domain,  
subject to the following boundary  conditions, which are matched  with the choice o f  the system of  
coordinates  

GE: 3' =0 ,  tp=O: AB: x = O .  ~ff=G; BC: x = O ,  ~ = 0  

ED: x = L ,  ~g=O; AG: t p - y = O ,  xg=Q;  CD: t p + p y = C ,  ~ = 0  (1.1) 

Here, Q is the discharge of filtered water (from the point drain B) in a calculation on a chosen flow 
domain and p = 92//91 - 1 ( P l  and P2 are the densities of the fresh and saline waters). The first condition 
on the segment CD, which is specific to this problem, is based on prerequisites concerning the immobility 
of the saline water and on the continuity of the pressure on crossing the line separating this water from 
the filtering fresh water [4]. 

The problem in question arose as an extension of the problem of the drainage in a soil layer with a 
confining stratum. The construction of the solution for this scheme with its subsequent extension to 
the problem under consideration has been described previously [2]. It is based on conformal mappings 
of the domain of the function co (Fig. lb) and the two-sheeted domain 1/w (Fig. lc) of inversion of the 
hodograph of the filtration velocity ff  = wx + iwv, which is conjugate with the complex velocity w = 
Wx-  iwy = dco/dz [3] in the half-plane Im ~ 0 (Fig. ld). On the segment 0 ~ g, which corresponds 
to the depression curve, the mapping functions can be represented in the form 

03(~) Qa](l+b)(b+g) i du +iQ= 
It ~ ( b + u ) ~ / ( l - u ) ( g - u )  

tPrikl. Mat. Mekh. Vol. 60, No. 3, pp. 494-504, 1996. 

493 



494 V.N. Emikh 

H "BA 

(a) 

Z -J  __.,>..~ _ "qG 

® 

2" 

iT 

(c) 

(b) 

~ 7 7 S  c 

(d) 

Fig. 1. 

= 2Qars h J ( l  + b)(g - 4) + iQ 

M ~' P(u)du 
1 _ dz =.._~{ 41t3(g - u ) ( d - u ) 3  w(~) dm 

+i=  

= - M  
( I+; )~- ;  /)2K 

(1+ Z(ot, k)+i; 
;4~-d-;) p 

M> 0 

(1.2) 

Here 

P(u) = u 3 - Cl u 2  + c2 t l  - c 3 ; 

c 2 = g ( d + 2 f + a d P ) ,  c3 = df~,,; 

E(ct, k) _ E  F(~, k). Z(ot, k ) 

= arcsin ~/(1 - ~ / g)/(1 - ~ / d). 

q = 2d + f +  aE 

a =  1+ 
~M 

E _ k ' 2 K  
O= 

k 2 

k=4~/J, k'=4~-~ ~ 

(1.3) 

Incomplete F(a ,  k), E(tx, k) and complete K, E elliptic integrals of the first and second kinds with 
modulus k in the normal Legendre formula as well as the Jacobian zeta-function Z(t~, k) associated 
with it [5, formulae (110.02), (110.03) and (140.01)] occur in these expressions. 

Using relation (1.2) for I/w, transformed to the segment AB (--~ < ~ < 0), and the condition 
(l /w);  = -b = 0, we have 

p ( f _ b )  b~f~-~J(p,b,d,g);  J = l - ( l + p ) A  0 arcsm k (1.4) 

This contains another, also standardized, elliptic lambda-function, the Heuman function (C. Heuman 
[5, formula (150.03)]) 
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Ao (7, k) = 2 [ E F(y, k" ) + KE('~, k' ) - KF(y, k)] 
7C 

(1.5) 

Since M > 0, it then follows from (1.4) that 

f <  b when ./< 0; f> b when ./> 0 (1.6) 

The limiting ca~e when f = 0 is possible within the framework of the first relation. In this case, the 
hydrodynamic pressure in the segmentAB,p ~< 0 and the equality is only satisfied at the pointA, which 
becomes the cusp of the depression curve [6]. Subsequent reduction of the pressure in the segment 
indicated by as small an amount as desired while increasing the withdrawal of water destroys the dynamic 
equilibrium betwe, en the flow and the air phase above it, which leads to the break through of air into 
the water supply. 

The limiting ca,;e whenf  = oo, which is characterized by the relation dp/dy/> p~g in the segment BC, 
is associated with the second relation of (1.6). The equality is only preserved at point C, which is 
converted into the cusp of the line of separation [1]. Dynamic equilibrium between the fresh water, 
which is moving at the edge, and the saline water lying under it is maintained, descriptively speaking, 
only at this point as, within the limits of the segment BC, the hydrodynamic pressure gradient already 
exceeds the hydrostatic equilibrium gradient in the saline water zone and the further activation of the 
water supply by as small an amount as desired leads to a break through of the saline water into it. 

From relations (1.2), we have after some reduction which includes integration by parts [2, Section 
12] 

°)(~)-°)(~°) + !  c:( I--L-][o)(;)-o)(u)ldu (1.7) z(~) = Z(~o)~ W(~o ) , ~lu~ w(u)) 

In connection 'with the segment AG, we take ~ = g, z(~)  = 1, co(~) = iQ, w(~) = -i in (1.7) 
(Fig. 1). Using the integral representation (1.2) for the function 1/w(~), we obtain the equation of the 
depression curve in the complex parametric form (0 ~< ~ ~< g) 

Z(~) = / +  Q + it0(;)+ M !  P(u)[CO(~)- c0(u)ldu (1.8) 

The function t~,(~) is defined by the first relation of (1.2). 
Guided by the direct formulation of the problem, we agree to specify, in each actual version, the 

values of Q and p and the geometrical parameters of the edge 1, L, 13 and H 0. Using these parameters, 
we derive the following system of equations in the four unknown parameters of the conformal mappings 
b, d,g and f 

M, / 71U(u)[~p(u) - ¢p(0)]du = I tp(u) = 2Q arsh .[ (I + b)(g - ~ I 
2 o rt ~ ( l - g ) ( b + u ) )  

l + Q -  MQ i U(u) arcsin. / (b + g)(!- U)du = L 

o 

~(o) + ~ I U(u)[~(o) - ~(u )]du = f~ 
2 -b 

(1.9) 

Qa/(l+b)(b+g)T IH2+tPl(d)-tP~(u) ] IRe(llw)co[du 
•L ,l p (b+u)~(u -I)(u - g) 

= H o 

2Qarsh/("  'cu " 
1' 
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=-M(f+u)+(,-~)---~-- ~u(u-d) ( l+ll2KZ(arcsinaf~-'kll 
p )  "tr, t, V u J J 

The first equation of the system follows from equality (1.8) when ~ = 0, z = iyA, co = ~p(O) + iQ, 
taking into account the relation YA = y(0) = ~0(0), which is defined by the first boundary condition in 
(1.1) on the depression curveAG. In deriving the two following equations, which include the quantities 
L and I~, dependence (1.7) for z(~)was first transformed to fit segments GE andAC. The final equation 
reflects the condition that the initial volume of the saline water is conserved during the formation of 
the edge. In the initial notation, this condition leads to the relations [1] 

L 

YCD( x)dx = --7 YCD(u) d'xcn(U) du = HoL 
o d du (1.10) 

The dependenceYco(U) is obtained from the first condition (1.1) in CD: using point D, it can be written 
in the form 

~01 + py = tpl (d) + pH 2 

The function 9l(U) is contained in (1.9). As far as the maximum depth of the edge H2 (Fig. la) is 
concerned, it is calculated with the remaining constants occurring in the integral before each conversion 
to the integral on the left-hand side of the fourth equation of (1.9). The expression for/-/2 follows from 
formula (1.7), transformed to segment ED when ~ = 1. 

Returning to the integrand in the second integral of (1.10), we again make use of boundary conditions 
(1.1) in the segment CD and the integral representation for mco(U) = CPco(U) (d <~ u ~ oo), which is 
obtained from the first dependence of (1.2), In this case, we have 

du du du dm du du rt(b+u)X/(u- CD 
The notation for the expression Re (1/w)CD occurring in (1.9) is based on representation (1.2) for 

the function 1/w(~), which has been transformed to fit the segment CD ([2], formula (13.3)). 
The values of l, L, [3 and H0 are specified taking account of the natural constraints 0 < l < L, 0 < 

< H0. The magnitude of Q must not exceed the value at which one or other of the two above-mentioned 
critical flow conditions occurs. It is precisely for such a condition that it is necessary to carry out a 
preliminary calculation of the flow at the edge. However, it is not known in advance how it will turn 
out to be in the ease of a chosen combination of the above-mentioned physical parameters. 

2. D O U B L E  C R I T I C A L  B E H A V I O U R  

A singular situation, which is inherent in the problem under consideration, of the flow on the brink 
of the destabilization of the two free boundaries with the simultaneous conversion of their points A 
and C into cusps (Fig. 2a), has been pointed out previously [2] as the key stage in the investigation. In 
the case of such flow behaviour, which will henceforth be called double critical flow, the whole of the 
second sheet of the domain of 1/w (Fig. lc) degenerates into the point 1/w = i and the quadrant Re 
(l/w) ~< 0, Im (l/w) ~< 0 degenerates into the point 1/w = -ip (Fig. 2b). A conformal mapping of the 
domain in the half-plane Im ~ I> 0 (Fig. 2c) is carried out by means of the function 

1 = N  i (r-u)du ( ~ ) 2  -'~ ; ~ + i = -  I+ KZ(a,k)+i (2.1) 

Relation (1.2) for the function w(~) is preserved, as is representation (1.7) for the function z(~) in 
which we now have, starting from (2.1) and using the formula for the differentiation of the function 
Z(a, k) with respect to an argument [4, formula (730.03)] 
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d 1 u - r  • N= 1+1 Ea/-d r=  (2.2) 

-~u -~ =Na/u(g_u)(d_u)3' pJ ~ ' E 

The function • is defined in the group of formulae (1.3). 
In the case being considered, the solution of the problem therefore contains three unknown mapping 

parameters: b, d and g. A relation exists between them which is expressed by the condition (l/w); = -4, 
= 0. Using the representation of the function 1/w(~) in the segment AC which is obtained from 
dependence (2.1), this condition leads to the relation (cf. (1.4)) 

J(p,b,d,g)= l - ( l  +p)Ao(arcsin~d / (b+d) ,~/g l d)=O (2.3) 

The function A~, is expressed by formula (1.5). 
So, in the case when there are three defining geometrical characteristics of the scheme (l, L and H0), 

just two of the mapping parameters are now independent: we shall assign the parameters d and g to 
them. The filtration rate Q from the drain B, together with these parameters is also subject to calculation 
from the system of three equations associated with the above-mentioned characteristics. These equations 
are analogous to the first, second and fourth equations of system (1.9), and an analogue of the third 
equation of (1.9) is then used to find the ordinate 13 = [~. of the drain. On eliminating the quantity Q 
from this system, we obtain the system 

f~(d,g)=ll L, f2(d,g)=L/ Ho (2.4) 

The solution of the initial system is thereby reduced at the first stage to finding the parameters d and 
g, where 

g~(g0,1), d~(1,do); go=sn2(IK,k), do=l /k  2 (2.5) 

Here, sn is the Jacobi elliptic function ([5], formula (120.010). 
Equalities (2.5) ,determine the affices of the points G and D in the ~-plane when Q = 0 and the domain 

ofz is a rectangle. Constraints (2.5) are associated with the following tendency to stability which is reveal- 
ed and made use of in the calculations: when the filtration rate Q increases, when the values of the 
other physical input parameters are fixed, the parameters g and d approach one another and unity by 
increasing and decreasing respectively (Fig. ld). This agrees with the change in the relative arrangement 
of the singular corner points on the boundary of the flow domain in the case of an intensification of 
the drain as a result of which the non-stationary points A(0) and C(~*) approach it while removing, at 
the same time, the first of these points from the fixed points G(g) and E(1), and the second of these 
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points from the points E(1) and D(d) (Fig. la, d). It is true that the last point is movable in the domain 
of z but, nevertheless, the nature of the dependence of its affix d on the rate Q which has been noted 
above is unfailingly exhibited in the calculations. 

We now represent the second equation of system (2.4) in the form 

F2 (d) = f2 [d, g(d)]  = £ / H0 (2.6) 

Equation (2.6) is solved for the parameter d, and the parameter g is determined from the first equation 
of (2.4) in an internal cycle for each of the values of d which are touched upon the solution process. 
Here, for each pair of parameters d andg, the determination of the value ofb from relation (2.3) precedes 
the calculation of the function f l(d,  g), which also includes the parameter b. The implementation of 
such procedures is based on a detailed numerical investigation of the behaviour of each of the functions 
in the equations and on the identification of the integrals in which the required parameters must be 
contained. In particular, the parameter g is determined from the first equation of the system taking 
account of the monotonic growth in the functionfl(g, d) which has been established when the parameter 
g is increased (in this case, as was mentioned above, the parameter d is fixed). On the other hand, the 
function F2(d) in Eq. (2.6) is a monotonically decreasing function. 

Having found the parameters d and g in the double critical state, the filtration rate Q = Q. of the 
drain is determined from an equation associated with the magnitude of H0. The ordinate of the drain 
15 = 13. is then calculated. Actually, the value of Q. turns out to be the maximum attainable productivity 
of the water supply from the edge which is ensured when the drain is located at a depth I~.. It is as 
though the double critical state borders all the drainage states which can be obtained in a problem for 
a specified combination of physical input parameters p, l, L and H0 when the ordinate I~ of the drain 
B is varied in the range (0, H0), which also includes the simple critical states mentioned above, associated 
with any one of the free boundaries. 

3. FLOW IN A WATER SUPPLY 

We will now consider the problem of the recovery of fresh ground water from an edge. The boundary- 
value problem formulated in Section 2 is directed towards solving this. 

By finding the value of 13. we can choose one of the two simple critical states into which the filtration 
process passes when the intensity of the drain, laid at a depth [5, is increased: f = 0 when 15 < ~. or 
f -  oo when 13 > 13.. All relations, equations and integrands are obtained for these conditions from those 
presented above by taking the limit with respect to the parameter f. 

System (1.9) is used to find the parameters b, d and g, which are now subject to the constraints 

be(O,b . )  when 13<~., b~(b.,, ,o) when [3>13.; g e ( g o , g . ) , d e ( d . , d o )  (3.1) 

Values of parameters calculated in the double critical state are given an asterisk. 
Furthermore, the discharge Q, which was initially also eliminated from system (1.9), is here also subject 

to determination by means of its transformation to the form (cf. (2.4), (2.6)) 

F~(g)= f j ( b , d , g ) = l /  L 

Fz(d) = f2[b,d,g(b,d)] = L~ H o 

F3(b) = fa[b,d(b), g(b,d)] = ~ / l 

(3.2) 

In accordance with this notation, the function f3 in the third equation of system (3.2), which is solved 
in the external cycle of the procedure, is represented as a complex function of the parameter b, the 
change in which in some of the simple critical states is regulated by constraints (3.1). For each of the 
values of the parameter b, which are touched upon during the course of the solution and are fixed during 
conversion to the first two equations of the system, the parameters d andg are found using the scheme 
described above, and these parameters are also introduced into the function F3(b) which has to be 
calculated at each step of the above-mentioned external cycle. 

Comparing the last two constraints of (3.1) with the corresponding constraints in (2.5), we see that 
the calculation of the double critical state enables one to narrow down the initial search intervals for 
the parameters d and g by matching them with the range (0, Q.) of possible values of the discharge Q. 
Here and in the subsequent calculations, observation of these corrected intervals in conjunction with 
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the corresponding: constraint on the change in the parameter b ensures that the condition M > 0 is 
satisfied and also ensures a monotonic increase in the function Fa(b) from 0 to 13.//when f --- 0 and 
from ~o/l to Ho/l whenf  = 00 which is used in solving the third equation of system (3.2). 

After the parameters b, d andg have been found from the fourth equation of system (1.9), the discharge 
Q is calculated as before. We denote the value of the discharge when f = 0 and f = 0- by Q1 and {22, 
respectively. The dependence of Q on the depth of the drain when I = 40, L = 50, H0 = 20, p = 0.02 
is illustrated by the graph in Fig. 3. The coordinates ~ = 1~. = 0.993 and Q = Q. = 0.180 of its maximum 
point are found in the double critical state. As a result, the question of the permissible values of Q 
when the drain is laid at an arbitrary depth 13 is clarified, which provides a means of calculating the flow 
for any value of Q which does not pass beyond the boundary established for it. 

In the case of such drainage conditions, which are henceforth referred to as normal conditions, the 
system of Eqs (1.9), as has already been mentioned, is subject to solution in the whole volume. We 
transform it to the form (cf. (3.2)) 

Ft(g)= f l ( b , f , d , g ) = l /  L 

F 2 ( d )  = J2[b , f ,d ,g(b , f ,d )]  = L / n o 

F~(b) = f3[b, f (b) ,d(b, f ) ,  g(b,f ,d)] = 911 (3.3) 

E4(f) = f4[b , f ,d (b , f ) ,g (b , f ,d ) ]  = a /  Ho 

The four-layer cyclic procedure for solving the system of Eqs (1.9), which is implemented in the 
computer program, is reflected in this notation. The third equation of system (3.3) is solved for the 
parameter b, as in the case of a simple critical state, in the external cycle. The constraints on b are adapted 
to the ranges (0, Q1) or (0, Q2) and the possible values of the discharge Q in the following manner 

b e (b I , b o) when 13 < [3, 
b E (bo,b2) wfien f1>[3, 

b o = sn2(~JK',k')l cn2(~K',k ') 
K" = F(Ttl 2,k')  (3.4) 

Here, bo, bl and b2 are the values of this parameter when Q = 0, Q1 and Q2, respectively, and sn is 
a Jacobi elliptic ftmction ([5], formula (120.01)). 

The next cycle, which is embedded in the external cycle, is now additional with respect to a simple 
critical state. The determination of f  from the fourth equation of system (3.3) is associated with this cycle. 
Two internal cycles are directly embedded in this cycle and a subsystem of the first two equations of 
system (3.3) is solved for the parameters d andg in these internal cycles, subject to the constraints (3.1). 

a2 

0.1 

~=0 

o w f l  2o 

Fig. 3. 
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As far as the constraints on the parameter f are concerned, their establishment necessitates some 
additional clarification of certain details. 

If it is accepted that the dependences f(Q) and b(Q) are continuous, then, under normal drainage 
conditions which are close to the critical state obtained with a specified value of b, the relation between 
the parameters f and b, which is inherent in the latter case, is preserved and, consequently, we have 

0 < f <  b when 13 < [3.; b < f <  oo when [3 > ~. (3.5) 

Returning to Eqs (1.4) and taking the condition M > 0 into account, we note that, when the parameters 
b, d and g are varied when solving system (3.3), each of relations (3.3) between the parameters b and 
f can be converted into an opposite relation with a change in the sign of the function J(p, b, d, g). Its 
dependence on each of the mapping parameters occurring in it is determined by the inequalities 

--~ bg > 0, ~-~ < 0 (3.6) 

which are obtained by differentiating the function A0 [5, formulae (710.11), (730.04)] taking account 
of expression (1.3) for the modulus k. 

Relations (3.6) enable one to identify ranges of values of the parameter b within the framework of 
which the function J retains its sign for any values of the parameters d and g which are subject to 
constraints (3.1) 

J < 0  when 0 < b < b . .  J > 0  when b0<b<o~; b,<b0 (3.7) 

Here, b 0 is the root of Eq. (2.3) when d = do, g = go, and the value of b = b. is found from the same 
equation when d = d., g = g.. 

In these cases when the initial range of variation of the parameter b specified by the first or second 
(depending on the relation between the quantities 13 and 13.) of constraints (3.4) is fitted into the 
corresponding interval of (3.7), the regulation of (3.5) is preserved for all permissible values of the 
parameters b, d and g. Taking this into account, the fourth equation of system (3.3) is solved with a 
fixed parameter b and with the parameters d and g, which are computed in advance and in the internal 
cycles. The unique solvability of the equation is ensured by the monotonic decrease in the function F4(f) 
as the parametersfand b come closer together, which is established in the calculations, and by the fact 
that the specified values of Q/Ho is contained within the range of variation of this function. The asymptotic 
form [2, formula (13.9)] 

2K('v/~-~) ~ b(l + b)(b + d)j(p,  b, d, g)Q 
f -- b + ~pL d 

holds for small discharges Q which have a hydrodynamic colour: "extinguishing" of the drain B when 
the point F, which has a finite velocity, becomes coincident with it. 

Additional procedures are provided when there is mismatch of the corresponding ranges (3.4) and 
(3.7) of variation of the parameter b, which ensures the determination of all of the mapping parameters. 

The flow scheme together with the boundary-value problem which describes it are simplified when 
the surface becomes completely inundated. The critical state of drainage, which is uniquely possible 
now for any depth of the drain [3, is associated with the sole remaining free boundary, that is, the line 
of separation between the edge and the saline water. The value of Q, which is calculated for such a 
state, and the range of possible changes in the discharges which is subsequently calculated for other 
drainage conditions, increases without limit as the drain approaches the inundated surface if, of course, 
one starts out from the fact that the inflow from the surface is capable of compensating for any outflow 
from the edge. In this case, it is possible to associate the hydrodynamic flow model with the well-known 
problem of the outflow of fresh water which is drawn into the ground from so-called infiltration basins 
and cleansed from impurities during filtration on its way to the water supply. 

We will illustrate some special features of the flow at an edge using the results of calculations carried out for 
1 = 40, L = 50, H 0 = 50, 13 = 2, p = 0.02. Any length scale can be assigned to the input and the calculated geometrical 
quantities. 

The basic results of calculations for double critical drainage conditions are contained in the first line of 
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Table 1 

501 

b d g f Q /-/1 /-/2 yA 
2.4 x 10 -3 1.39 0.973 1.54 27.2 57.7 5.40 
0.12 x 10 -3 1.94 0.940 0 0.456 47.3 52.3 1.91 
4.92 x 10 -3 1.995 0.932 4.91 x 10 -3 0.0456 49.8 50.2 0.136 

Table 1. The parameters d. andg. are determined from the system of Eqs (2.4) with constraints (2.5) and the values 
of d0 = 2 andg0 = 0.931 at which they are calculated using formulae (2.5). The value of the parameter b, in the 
same line is connected with the values of d. and g. by relation (1.3), which has been noted in Section 2. After the 
parameters b,, d. and g. have been found, the depth I]. = 5.70 of the drain and its filtration discharge rate 
Q. = 1.54, which is the greatest possible discharge rate in this version, are calculated. Three geometrical quantities 
HI,//2 and YA, which determine the position of the end points of the free boundaries of the edge (Fig. 2a), are 
included in Table 1. The coordinates of the individual intermediate points of the free boundaries are also calculated 
for each set of conditions. 

In conformity with the choice of the quantity I~ = 2 < I~., the calculations at the following stage are taxied out 
for the simple critical state whenf = 0, associated with the depression curve, pointA of which remains a cusp, and 
are represented by the second line of Table 1. The range of its productivity is reduced considerably when the drain 
is located higher than in the double critical state. At the same time, the stress in the line of separation is significantly 
reduced and the upper point C of this line goes off far below its position in the double critical state, approaching 
the unperturbed levelH0 of the saline ground water. The mapping parameters are determined from the system of 
Eqs (3.2) with constraints (3.1), the first of which holds the parameter b in the given case. 

Under normal drainage conditions, with which the third line in Table 1 is associated, the discharge rate Q is 
specified to be equal to one tenth of its maximum possible value, when ~ = 2, of Q1 = 0.456 which is almost 34 
times smaller than the value of Q. in the double critical state. As a result of this reduction in the drainage, the two 
free boundaries of the edge are significantly flattened out, as may be judged from the values of Hi,/-/2 and YA. 
Now, however, the two points of inflection R1(23.3; 0.0554) and R2(1.86; 0.125) remain in the depression curve. 
As in a simple critical state, the separation line has a unique point of inflection R(24.2; 50.0). The tendency noted 
above for the parameters b andf to  approach one another for small values of Q is clearly seen. 

4.. C A L C U L A T I O N  OF T H E  S O I L  D E S A L T I N G  Z O N E  

We shall assume that fresh water begins to enter from the surface into the soil, which initially contains 
saline ground water, with the simultaneous commencement of drainage with a certain intensity Q, 
Initially, only saline water drains off through it from the soil, and then, at a certain instant, fresh water, 
which gradually replaces the saline water. 

If the dynamic equilibrium between the filtration flow and the atmosphere is not disturbed during 
this process, then, Jin the limit, a steady flow of fresh water is formed above the remaining undisplaced 
saline water in one of the critical states described above associated with the separation line. The mean 
thickness H0 of  the: layer of fresh water at the edge which has been formed is determined by relation 
(1.10). 

A flattening out of the separation line occurs when the drainage intensity is reduced and with the 
postulated conservation of the volume of the saline water. An increase in the drainage discharge rate 
Q disturbs the equilibrium created between the fresh and saline water, leading to additional drainage 
of the latter and to an increase in the depth H0 of the demineralization zone. In this case, in order to 
avoid the breakthrough of air into the drain, the value of Q must not exceed the value Q. at which its 
depression curve also turns out to be at the edge which has been formed on the brink of destabilization. 

It is therefore also necessary here, at the first stage, to calculate the double critical characteristics, 
but for a specified ordinate J3 of the drain. In accordance with this, instead of  system (2.4), the system 

F~(g)= f~(b,g)=l/ L, F2(b)=J~[b,g(b)]=~/l (4.1) 

is now solved. 
The parameter  d, which is also contained in the functions f l  and f2, is computed in advance from 

relation (2.3) for each pair of parameters b and g, touched upon when solving system (4.1). 
After the parameters b, d and g have been found, the intensity of the drainage Q., at which a 

demineralization zone is formed under the stated conditions, is calculated as well as the greatest 
attainable mean thickness H0 of the zone in the case of the selected values of the quantities I, L, ~ and 
p. 
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Next, the edge in the critical s ta te f  = oo, associated with the separation line, is calculated for a certain 
fixed value of Q e (0, Q.). Here, the following system of equations 

F~(g) = 3 ' i (b ,d ,g)=  I~ L 

F2(b) = f 2 [ b , d , g ( b , d ) ]  = fJ/ l 

& ( d )  = f d b ( d ) , d , g ( d ) ]  = Q / L  

(4.2) 

has to be solved. 
The third equation in the parameter d, where now d e (1, d.), is solved in the external cycle of this 

procedure. The monotonic increase in each of the functions F1, F2, F3 with respect to its parameter  is 
established numerically and made use of when solving the system. The range of variation in the 
parameters is controlled by satisfying the relation J > 0 which, in this case, ensures that the condition 
M > 0 is satisfied by virtue of (1.4). 

We will now illustrate the above using the example of numerical calculations with I = 40, L = 50, 13 = 2, p = 
0.02. The values Q, = 0.0440 and H0. = 30.4 are obtained with this combination of input parameters. It is then 
calculated that H0 = 10.3 and 29.0 for the two specified values of the drainage discharge rates Q = 0.0440 and 
Q = 0.396 respectively. 

On comparing the values of the quantities Q., H0, and 13 with the values Q. = 1.54, H 0 = 50 and 13. = 5.70 for 
the numerical example of the preceding problem, found for the same input parameters l, L and p in the double 
critical state, we note an extension of drainage possibilities as a soil demineralizer, with its almost three-fold 
deepening. 

It is interesting that, in the flow model which has been adopted, these possibilities become unlimited 
regardless of the depth at which the drains are laid in the case of  complete inundation of the surface 
when there is no depression curve which limits the intensification of the drainage. Of course, the 
discharge rates of real drains, including vacuum drains, is always limited by the special features of their 
construction, by the water conduction of the soils and the surface water sources which compensate for 
the drainage. However, the function of the latter in the process being modelled solely consists of creating 
a layer of fresh ground water of a certain capacity in a deep well zone of the soil, after which the drains 
can be turned off altogether. 

The water improvement problem, with which the modification of the initial boundary-value problem 
proposed here is associated, was formulated by S. A. Aver'yanov [7]. An approximate solution of the 
problem was suggested by him, based on replacement of the two free boundaries by fixed horizontal 
boundaries, subsequent correction of which is made by means of the first boundary conditions (1.1) 
for these boundaries. 
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